Antimicrobial susceptibility of *Aspergillus fumigatus* and *Stenotrophomonas maltophilia* biofilms: did they find strength in unity?

Roisin L.1, Melloul E.1, Woerther PL.1,2, Guillot J.1, Dannaoui E.1,3, Botterel E.1,4

1 EA 7380 Dynamyc, UPEC, Enva, USC Anses, Créteil, France; 2 Unité de Bactériologie-Hygienne, Hôpital Henri Mondor, Créteil, France; 3 Unité de Parasitologie-Mycologie, Hôpital Européen Georges Pompidou, Paris, France; 4 Unité de Parasitologie-Mycologie, Hôpital Henri Mondor, Créteil, France.

Aspergillus fumigatus and *Stenotrophomonas maltophilia* (opportunistic gram-negative bacillus) form biofilms, especially in the airways of immunocompromised or cystic fibrosis (CF) patients where they are commonly co-isolated. Biofilms constitute a therapeutic challenge and very few data are available on polymicrobial (filamentous fungi and bacteria) biofilms susceptibility to antimicrobial agents. Our *in vitro* *A. fumigatus – S. maltophilia* biofilm model highlights an antagonistic relationship: *S. maltophilia* reduces growth of *A. fumigatus* and induces fungal phenotype modifications\(^\text{1,2}\).

Do polymicrobial interactions in biofilm module the susceptibility of pathogens to antimicrobial agents?

Figure 1: *A. fumigatus* susceptibility after exposure to increasing concentrations of amphotericin B. Percentage of inhibition of fungal biomass after treatment with AMB compared to untreated conditions in fungal and polymicrobial biofilms. *p < 0.05, Wilcoxon.*

Figure 2: *S. maltophilia* susceptibility after exposure to increasing concentrations of levofloxacin. Percentage of inhibition of bacterial biomass after treatment with LVX compared to untreated conditions in bacterial and polymicrobial biofilms. *p < 0.05, Wilcoxon.*

Figure 3: Effect of proteinase K pretreatment on SM_REF susceptibility to LVX in polymicrobial biofilm. PK: proteinase K (50 µg/mL), enzymatic degradation of the matrix; LVX: Levofloxacin (1 µg/mL). *Wilcoxon, p = 0.0024.*

The fungal biomass appears to provide a protective coating that reduces the bacterial susceptibility.

A. fumigatus is more susceptible to AMB in polymicrobial biofilm

S. maltophilia is less susceptible to LVX in polymicrobial biofilm

The polymicrobial biofilm may be benefit for *S. maltophilia* to fight levofloxacin especially through the *A. fumigatus* ECM. In contrast, the antagonism of *S. maltophilia* against *A. fumigatus* observed in polymicrobial biofilm could increase its susceptibility to amphotericin B. To eradicate both pathogens in polymicrobial biofilm, combination of amphotericin B with levofloxacin could be an interesting antimicrobial option.

Material & Methods

Susceptibility testing:
- qPCR: fungal / bacterial biomass quantification
- CFU: bacterial viability quantification

LVX activity against SM

LVX does not affect the efficacy of AMB against AF

Amb + LVX is more active against SM in polymicrobial biofilm than LVX alone

9th ADVANCES AGAINST ASPERGILLOSIS AND MUCORMYCOSIS - 27 - 29 February 2020 - Lugano, Switzerland

Contact: lolita.roisin@u-pec.fr ; francoise.botterel@aphp.fr