Molecular identification of *Aspergillus* isolates from Magellanic penguins

Aryse Martins Melo\(^1,6,*\), Rodolfo Pinho da Silva Filho\(^2\), Vanice Rodrigues Poester\(^3\), Andrea von Groll\(^7\), David A. Stevens\(^4,5\), Raquel Sabino\(^8\), Melissa Orzechowski Xavier\(^1,3,5\)

\(^1\) Programa de Pós-Graduação em Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Avenida Eliseu Maciel, s/n, Pelotas, RS, Brazil, \(^2\)Aiká Consultoria em Soluções Ambientais, Avenida do Trabalhador, 1709, Praia Grande, SP, Brazil, \(^3\) Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua General Osório, 1109, Rio Grande, RS, Brazil, \(^4\) Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA, \(^5\)California Institute for Medical Research, San Jose, California, USA, \(^6\) National Institute of Health, Dr. Ricardo Jorge, Lisbon, Portugal "arysemartins@gmail.com"

PURPOSE

Aspergillosis is an important disease in marine birds and has a mortality rate of 50% in Magellanic penguins (*Spheniscus magellanicus*) in captivity. Molecular biology allows the precise identification of *Aspergillus* to species level, which is important since cryptic species may show differences in their virulence attributes and in their antifungal susceptibility. This work aimed to perform molecular identification and the itraconazole susceptibility profile of *Aspergillus* clinical isolates collected from Magellanic penguins with proven aspergillosis.

METHODS

Clinical isolates of proven aspergillosis cases in Magellanic penguins from Marine Animal Recovery Center, Rio Grande, RS, Brazil, 2011 - 2018

Classification according to macro- and micromorphology

Fungal collection

Aspergillus section *Fumigati*

PCR

\(\beta\)-tubulin: \(\beta\)tub 1 and \(\beta\)tub 2

Calmodulin: cmd 5 and cmd 6

Itraconazole susceptibility tests

Itraconazole concentrations range: 0.0313 to 16\(\mu g/ml\)

Incubation: 48 h 37\(^\circ\)C \(\rightarrow\) visual reading

MIC \(>2\mu g/ml\)

100% inhibition

Resistance

Laboratory of Mycology of the Medical School of Federal University of Rio Grande FURG

RESULTS

| 19 isolates of *Aspergillus* section *Fumigati* |
| All isolates were identified as *Aspergillus fumigatus sensu stricto* |

DISCUSSION

A. fumigatus sensu stricto was identified as the etiologic agent of all aspergillosis cases from the analyzed penguins. Since fungal colonies are commonly found in air sacs from penguins with aspergillosis, they probably can release conidia into the environment during breathing. Given that some of these animals receive itraconazole prophylaxis during the rehabilitation process, this can have some implications beyond the penguin’s rehabilitation. Large use of prophylaxis in this situation can contributes to the selection of resistant strains in this context. Thus, considering the One Health approach, the existence of resistance in this specific setting may have broader implications. Therefore, although no resistant strains were found in our study, the surveillance ofazole resistance in avian species group is indicated given the worldwide emergence of azole resistance in *A. fumigatus sensu stricto*.

ACKNOWLEDGEMENTS

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), grant number 001, PDSE and PRINT-CAPES-FURG Program; and to the organization of the AAAM2020 for the scholarship to the first author.